

rnaiutilities

A collection of python tools for processing image-based RNAi screens.

Introduction

Welcome to rnaiutilities.

rnaiutilities provide a set of python modules and commandline scripts that can be used to process, convert, query and analyse imaged-based RNAi-screens.

The packages are designed for the following workflow:

	Download raw mat files from an openBIS instance or where ever your data lie. The mat files are supposed to be created by CellProfiler, i.e. platewise data-sets, where every file describes a single features for single-cells.

	Parse the downloaded data using rnai-parse: install the package, and process as described in the package folder. This generates a list of raw tsv files or a bundled h5 file. Until now the parser writes featuresets for cells, perinuclei, nuclei, expandednuclei, bacteria and invasomes.

	Query the meta DB using rnai-query and create and combine datasets. For that first meta files generated from the step above are written into a database. Then the DB can be queried against to subset single genes, sirnas, pathogens, etc. and write the normalized results.

	To come: rnai-analyse for analysing large-scale RNAi screens.

The package is still under development, so if you’d like to contribute,
fork us on GitHub [https://github.com/dirmeier/rnaiutilities].

Installation

Make sure to have python3 installed. rnaiutilities does not support
previous versions. The best way to do that is to download anaconda [https://www.continuum.io/downloads] and create a
virtual environment [https://conda.io/docs/using/envs.html].

Download the latest release [https://github.com/dirmeier/rnaiutilities/releases] first and install it using:

pip install .

If you get errors, I probably forgot some dependency.

Usage

	rnai-parse
	Introduction

	Checking for file availability

	Parsing the data

	Generating a report

	Computing overlapping feature sets

	rnai-query
	Inserting meta information

	Creating data-sets

	Querying for plates

	Selecting single variables from the database

rnai-parse

rnai-parse parses Matlab files of image-based single-cell features
from RNAi screens. We assume the data has been generated using
CellProfiler which creates a single file for each feature that can be
measured from a flourescence channel.

Usually from the matlab files features for a single cell are hard to access,
since they are distributed over the different files. With rnai-parse we
first iterate over the single feature files and combine the features into a
feature matrix that is easier to work with. The result is a single tsv file
for every plate where the rows are single-cells and the columns single-cell
features.

The following sections describe the usage of rnai-parse, its
subcommands and the required CONFIG file. So far the following subcommands
are available:

	rnai-parse checkdownload for checking if all files are present correctly,

	rnai-parse parse for parsing the data,

	rnai-parse parsereport for creating a report of parsed files,

	rnai-parse featuresets for creating feature set overlap statistics.

The subcommands are needed to be called consecutively. So you need to
parse the files before creating reports and featureset statistics.

Introduction

To use rnai-parse, you need to create a CONFIG file in yaml format
with the following content:

Contents of config.yml file

layout_file: "layout.tsv"
plate_folder: "./"
output_path: "./out"
plate_id_file: "experiment_meta_file.tsv"
plate_regex: '.*\/\w+\-\w[P|U]\-[G|K]\d+(-\w+)*\/.*'
multiprocessing: False

You can have a look at an example yaml file here [https://github.com/cbg-ethz/rnaiutilities/blob/master/data/config.yml].

layout_file describes the placement of siRNAs and genes on the plates,
plate_folder points to the collection of matlab files, output_path is
the target directory where files are written to. plate_id_file is a list
of ids of plates that are going to be parsed in case only a subset of
plate_folder should get parsed. plate_regex is a pattern which plates you
want to use in the plate_id*file. multiprocessing is a boolean
determining whether python uses multiple processes or not.

Check out the data [https://github.com/cbg-ethz/rnaiutilities/tree/master/data] folder in the main repository for some example
datasets. The folder contains an example data-set for the pathogen
S. Typhimurium, the respective yaml config file, the meta file that
contains the plates to be parsed and the layout file for genes, sirnas, etc.

For all subcommands only the config file is needed as an argument. So if you
create the file once, you are settled.

Checking for file availability

As a first step it makes sense to check if all plates from
your meta plate file (experiment_meta_file.tsv [https://github.com/cbg-ethz/rnaiutilities/tree/master/data/https://github.com/cbg-ethz/rnaiutilities/blob/master/data/experiment_meta_file.tsv]) exist, i.e. have been
downloaded:

rnai-parse checkdownload CONFIG

This just prints a report to stderr if the files exist or not.

Parsing the data

If the files are downloaded as intended, parse them to tsv:

rnai-parse parse CONFIG

The result of the parsing process should be a set of files for every plate.
For example every plate should create *data.tsv files and a respective
*meta.tsv for every data file. Every data file contains the features for
a specific channel, like DAPI.

Generating a report

If parsing is complete, you can create a report if all files have been parsed
or if some are missing:

rnai-parse parsereport CONFIG

	The report is similar to rnai-parse checkdownload, only that this time we

	check if every file has been parsed correctly and meta files have been
created. Output is written to stderr.

Computing overlapping feature sets

Finally after having done the parsing and file checking you can create
feature overlap statistics between the different screens like this:

rnai-parse featuresets CONFIG

The script writes the results to stdout.

rnai-query

rnai-query builds on the previously parsed Matlab files (see
rnai-parse) and uses them for quickly subsetting the complete dataset
of single-cells using an SQLite.

For that, you first need to create a database that indexes the plates` meta
information. Having the database set up, you can query for different plates
and compile different data-sets.

The following sections will explain how rnai-query and its subcommands
are used. So far the following subcommands are available:

	rnai-query insert for inserting meta information to a database,

	rnai-query query for querying the database and writing plates to a file,

	rnai-query compose for creating of data sets,

	rnai-query select for selecting single variables from the database.

The steps have to be taken in succession (or at least insert has to be the first command to be executed), so make sure to read it all.

Inserting meta information

Before being able query the database, we need to insert the parsed meta files.
We can to that by calling:

rnai-query insert /i/am/a/file/called/tix.db
 /i/am/a/path/to/parsed/data

where /i/am/a/path/to/parsed/data points to the folder where the *meta.tsv
and *data.tsv files lie (the result from rnai-parse).
This creates an SQLite database called tix.db which we will use for
querying the data and creating datasets.

Creating data-sets

Having the database set up, we can query it and create custom
single-cell data-sets by filtering on meta information. As a motivating
example consider these two scripts:

rnai-query compose --sample 10 /i/am/a/file/called/tix.db OUTFILE
rnai-query compose --plate dz05-1e --gene pik3ca
 /i/am/a/file/called/tix.db
 OUTFILE

The first query would return 10 single cells randomly sampled from each well
from all plates and write it to the file OUTFILE. The second query would
only look at plate dz05-1e and gene pik3ca and write the single cells
that fit the criteria to OUTFILE.

The next sections walk you through using rnai-query compose.

Command line arguments

Say we would want to filter the database on some critera and only write the
single-cell features that fit these conditions. Using rnai-query compose you
can choose which plates/gene/sirnas/etc. to choose from, by setting the
respective command line arguments:

	--normalize

	The normalization methods to use, e.g. like ‘zscore’ or a comma-separated string of normalisations such as ‘bscore,loess,zscore’. Defaults to ‘zscore’. If you do not want to normalize you need to explicitely set to ‘none’.

	--from-file

	You can provide an optional tsv file that has been created using rnai-query query such that only on these files will be searched. The filters you provide, like –study or –pathogen, still need to be given.

	--study

	The study to query for, e.g. like ‘infectx’, or a comma-separated string of libraries, such as ‘infectx,infectx_published’.

	--pathogen

	The pathogen to query for, e.g. like ‘adeno’, or a comma-separated string of pathogens, such as ‘adeno, bartonella’.

	--library

	The library to query for, e.g. like ‘d’, or a comma-separated string of libraries, such as ‘d,q’.

	--plate

	The plate to query for, e.g. like ‘dz03-1k’, or a comma-separated string of plates, such as ‘dz03-1k,dz04-1k’.

	--design

	The design to query for, e.g. like ‘p’.

	--replicate

	The replicate to query for, e.g. like ‘1’, or a comma-separated string of replicates, such as ‘1,4’.

	--gene

	The gene to query for, e.g. like ‘pik3ca’, or a comma-separated string of genes, such as ‘pik3ca,pik4ca’.

	--sirna

	The sirna to query for, e.g. like ‘s12312’, or a comma-separated string of sirnas, such as ‘s12312,s123112’.

	--well

	The well to query for, e.g. like ‘a01’, or a comma-separated string of wells, such as ‘a01,l05’.

	--featureclass

	The featureclass to query for, e.g. like ‘cells’ or a or a comma-separated string of cells, such as ‘cells,perinuclei,nuclei’.

	--sample

	The amount of single cells that are sampled per well,like ‘100’. If unset defaults to all cells.

	--debug

	Dont write the files, but only print debug information.

	--help

	Print a help message.

If any argument is not specified it is internally set to None, the whole database will be searched and no filters applied.

Examples

Here, we show some examples how you can query. In these examples we use a
SQLite database called database.db.

Sample 100 cells from every well for every plate and write standardized data
to OUTFILE.

rnai-query compose --sample 100
 database.db OUTFILE

Filter by pathogens shigella and bartonella and write standardized data
to OUTFILE.

rnai-query compose --pathogen shigella,bartonella
 database.db OUTFILE

Filter by pathogens Shigella and Bartonella and gene pik3ca and write
standardized data to OUTFILE.

rnai-query compose --pathogen shigella,bartonella
 --gene pik3ca
 --normalize zscore
 database.db OUTFILE

Filter by pathogens Shigella and Bartonella and gene pik3ca and only
write debug info.

rnai-query compose --pathogen shigella,bartonella
 --gene pik3ca
 --debug
 database.db OUTFILE

Filter by gene nfkb1, pathogen Shigella, study infectx, pooled
designs, sample 1000 cells per well and write un-normalized data to OUTFILE.

rnai-query compose --gene nfkb1
 --pathogen shigella
 --study infectx
 --design p
 --sample 1000
 --normalize none
 database.db OUTFILE

Filter by gene pik3ca and mock, feature classes cells and perinuclei,
pathogens Shigella and Bartonella, library Dharmacon with a pooled
siRNA design, sample 100 cells from each well and write standardized data
to OUTFILE.

rnai-query compose --featureclass cells,perinuclei
 --gene pik3ca,mock
 --library d
 --design p
 --pathogen shigella,bartonella
 --sample 100
 database.db OUTFILE

Filter from a pre-made list of plates and the same filters as before.

rnai-query compose --from-file file.tsv
 --gene pik3ca,mock
 --library d
 --design p
 --pathogen shigella,bartonella
 --sample 100
 database.db OUTFILE

Querying for plates

If you are only interested in getting the plates the fullfil some criteria and
writing them to a file rnai-query query does the job.

rnai-query query --gene pik3ca,mock
 --library d
 --design p
 --pathogen shigella,bartonella
 --sample 100
 database.db OUTFILE

The file you are getting can then be used input for –from-file for
rnai-query compose. Sometiems this is required because the queries we want to submit to
the data base are so big that it crashes. The arguments are quite the same as above.

Selecting single variables from the database

Sometimes we might want to select single features from the database without
writing them to a file, for instance

	if we want to see which genes are available for a pathogen,

	to see which libraries are available for a pathogen,

	to see which plates carry which genes,

	…

We can use rnai-query select for this kind of question. For example, if
we are interested in finding which genes are available on plate dz05-1e, we
would call

rnai-query select --plate dz05-1e database.db gene

rnai-query select takes the same filters as rnai-query compose, except
sample, normalize and debug, so check section Command line arguments.

Examples

Here, we show some examples how you can select variables. In these examples we
use a SQLite database called database.db.

Select which genes are available for pathogens shigella and bartonella.

rnai-query select --pathogen shigella,bartonella
 database.db gene

Select which libraries are available for pathogens shigella and
bartonella and gene pik3ca.

rnai-query select --pathogen shigella,bartonella
 --gene pik3ca
 database.db library

Select pathogens for which pik3ca and mock, feature classes cells
and perinuclei, library Dharmacon with a pooled siRNA design are
available.

rnai-query select --featureclass cells,perinuclei
 --gene pik3ca,mock
 --library d
 --design p
 database.db pathogen

Index

 nav.xhtml

 Table of Contents

 		
 rnaiutilities

 		
 rnai-parse

 		
 Introduction

 		
 Checking for file availability

 		
 Parsing the data

 		
 Generating a report

 		
 Computing overlapping feature sets

 		
 rnai-query

 		
 Inserting meta information

 		
 Creating data-sets

 		
 Command line arguments

 		
 Examples

 		
 Querying for plates

 		
 Selecting single variables from the database

 		
 Examples

_static/ajax-loader.gif

_static/fig_single_cells.jpg

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

